今回は前回に引き続き、ドラマ「陸王」を例にとって話しを進めたいと思います。
前回は、MinitabのDOE(実験計画法)機能を使って、陸王のソールの硬さ(硬度)を決める数式を導きました。そして今回はDOE(実験計画法)で導いた数式を用いて、入力データである繭の大きさ、茹で温度、茹で時間のバラツキが、出力データであるシルクレイの硬度のバラツキにどのように影響するのかをモンテカルロ・シミュレーションで調べてみたいと思います。
“解説: モンテカルロシミュレーション:こはぜ屋の場合” の続きを読むフレームワークを使って一緒に問題を解決しませんか?
今回は前回に引き続き、ドラマ「陸王」を例にとって話しを進めたいと思います。
前回は、MinitabのDOE(実験計画法)機能を使って、陸王のソールの硬さ(硬度)を決める数式を導きました。そして今回はDOE(実験計画法)で導いた数式を用いて、入力データである繭の大きさ、茹で温度、茹で時間のバラツキが、出力データであるシルクレイの硬度のバラツキにどのように影響するのかをモンテカルロ・シミュレーションで調べてみたいと思います。
“解説: モンテカルロシミュレーション:こはぜ屋の場合” の続きを読む先日、ある集まりでDOE(実験計画法)に誰にでも分かる様に説明してもらいたいという依頼を受けたので、TBSのドラマ陸王を例に用いて説明しました。このブログでも一度「陸王」とDOEについて記事を載せていますが、再び掲載したいと思います。似たような内容になりますが、お許しください。
“解説: DOE(実験計画法):こはぜ屋の場合” の続きを読む先日、リーンシックシグマ・ブラックベルトのマイク根上さんと電話で話をしました。
その際、根上さんに全体最適化について尋ねられ、僕は設計最適化のプロジェクトのことだと思い、DFSS等で行う最適化について説明しました。
“解説: プロジェクトの最適化と最適化のプロジェクト” の続きを読む「解説: 顧客の声から顧客の価値へ」シリーズはこれからもしばらく続ける予定ですが、ここで一旦休憩をして全く別のトピックを取り上げたいと思います。今回取り上げるトピックは「最適化のための進化的調整方法」です。
“解説: 最適化のための進化的調整方法” の続きを読む